The reaction vial (1-mL Pierce conical reaction vial) was tightly closed by a septum (Chrompack 12 mm Septum Blue). After sonification until all the peptide was dissolved (vortex, if necessary), the reaction mixture was flushed with N₂ for 5 min and \pm 100 μ Ci of Na¹³¹I (6 \times 10⁻⁹ mmol) was added. The reaction vial was heated during 1 h at 140 °C. An aliqout (10 μ L) was taken and diluted with 190 μ L of eluent for control by reversed phase HPLC.

Radiolabeling Experiment, Method 2. A stock solution, containing 40 mg of gentisic acid $(2.6 \times 10^{-1} \text{ mmol})$ in 4 mL of ethanol/water (70/30, g/g), and a Cu²-solution, containing 32.5 mg of CuSO₄·5H₂O in 10 mL of water (0.013 M), were prepared. Both solutions were sonicated to dissolve all the material. To a solution of 1 mg of [4'-Br-Phe]precursor peptide (10^{-3} mmol) in $100 \,\mu$ L of ethanol was added 400 μ L stock solution and 90 μ L of Cu²⁺ solution, respectively. Reaction conditions were as described in method 1. A 10 μ L aliquot was analyzed by reversed phase HPLC.

Purification of the Labeled Peptide. The reaction mixture was diluted with 1.5 mL of HPLC eluent, filtered over a Millipore HV filter (0.45 μ m), and purified by semipreparative reversed phase HPLC (one injection, isocratic elution, water/ acetonitrile/methanol 72/20/8, 0.1% TFA as eluent). The radioiodinated peptide was collected and analyzed by reversed phase HPLC which confirmed the radiochemical and chemical purity (>99%). The overall radiochemical yield after HPLC purification was determined using a γ counter (Vinten, Isocal II, radionuclide assay calibrator).

Acknowledgment. This work was supported by a grant from F.G.W.O. (3.0131.93). The authors thank G. Laus and W. Van Den Nest for the GC-MS study.

JO950599Z

Additions and Corrections

Vol. 59, 1994

Barbara A. Schweitzer and Eric T. Kool*. Aromatic Nonpolar Nucleosides as Hydrophobic Isosteres of Pyrimidine and Purine Nucleosides.

Page 7238. Recent X-ray crystallographic and ¹H-NOE data indicate that the stereochemistry of **1** and **2** were incorrectly assigned. Both **1** and **2** as synthesized are in fact α -rather than β -anomers. Compound **3** is correct as shown. The original assignments were made on the basis of correlation with a published proton NMR spectrum of a related phenyl nucleoside and also by correlation of H-1' coupling constants to known α - and β -nucleosides. We now know, however, that these coupling patterns are generally reversed for aromatic C-deoxy-nucleosides as compared to N-nucleosides. A complete description of this unexpected finding, and synthesis of the β -anomers, will be published elsewhere. The primary conclusions of the paper, involving the proposed use of nonpolar aromatics as nucleoside isosteres, still stand.

JO9540211

Vol. 60, 1995

Yoshiaki Nishibayashi, Jai Deo Singh, Shin-ichi Fukuzawa, and Sakae Uemura*. [S,R;S,R]-Bis[2-[1-(di-methylamino)ethyl]ferrocenyl] Diselenides and Their Application to Asymmetric Selenoxide Elimination and [2,3]Sigmatropic Rearrangement.

Page 4116. The bottom line of Scheme 3 should be as shown below.

Mark Lautens,* Patrick H. M. Delanghe, Jane B. Goh, and C. H. Zhang. Studies in the Transmetalation of Cyclopropyl, Vinyl, and Epoxy Stannanes.

Page 4214, eq 3. The reaction described in eq 3 (ref 32c) incorrectly attributes this result to Nozaki and coworkers. In fact, ref 32d should be added with the following citation:

32. (d) Tanaka, K.; Minami, K.; Funaki, I.; Suzuki, H. Tetrahedron Lett. **1990**, *31*, 2727.

I would like to thank Professor Tanaka for bringing this error to our attention.

JO954023L

Tara J. Sprules and Jean-Francois Lavallée*. Unexpected Contrasteric Alkylation Leading to a Model for Five-Membered Ring Enolate Alkylation: Short Stereoselective Synthesis of (\pm) -Acetomycin.

Page 5041, column 1, line 5, should read ...center at the β -position of these enolates....

Page 5043, column 2, last line, should read ... the $\Delta G^{*}_{A\beta}$ and $\Delta G^{*}_{B\alpha}$ are unequally increased....

JO954024D

Hitomi Suzuki,* Tohru Nakamura, Tohru Sakaguchi, and Kohji Ohta*. A Convenient Synthesis of Functionalized Dibenzotellurophenes and Related Compounds via the Intramolecular Telluro Coupling Reaction. The Positive Effect of Heavy Chalcogen Atoms on the Molecular Hyperpolarizability of a Captodative Conjugation System.

Page 5275, Table 1, \mathbb{R}^3 of biphenyl **2c** should be Cl.

JO9540256